Partonic Equation of Sate in High-Energy Nuclear Collisions

Nu Xua) and Yifei Zhanga,b)

- a) Nuclear Science Division, Lawrence Berkeley National Laboratory
- b) Department of physics, University of science and Technology of China
 - (1) Introduction
 - (2) Bulk properties at RHIC
 - partonic collectivity from multi-strange hadrons
 - (3) Summary

Physical Goals at RHIC

Identify and study the properties of matter (EoS) with partonic degrees of freedom and determine the QCD phase diagram.

Penetrating probes

- direct photons, leptons
- "jets" and heavy flavor

Bulk probes

- spectra, v₁, v₂ ...
- partonic collectivity

Hydrodynamic Flow

Collectivity

Local Thermalization

Collision Geometry, Flow

Number of participants: number of incoming nucleons in the overlap region Number of binary collisions: number of inelastic nucleon-nucleon collisions

Charged particle multiplicity ⇔ collision centrality

Reaction plane: x-z plane

Hadron Spectra from RHIC

p+p and Au+Au collisions at 200 GeV

Multi-strange hadron spectra are exponential in their shapes. STAR white papers - Nucl. Phys. A757, 102(2005).

Yields Ratio Results

data

Thermal model fits

 $T_{ch} = 163 \pm 4 \text{ MeV}$

 μ_B = 24 ± 4 MeV

200 GeV 197Au + 197Au central collision

- In central collisions, thermal model fit well with γ_S = 1. The system is thermalized at RHIC.
- Short-lived resonances show deviations. There is life after chemical freeze-out.

RHIC white papers - 2005, Nucl. Phys. <u>A757</u>, STAR: p102; PHENIX: p184.

Multi-strange Hadron Ratios

In heavy ion collisions at RHIC, up to $p_T \sim 4$ GeV/c, (*model predicts 8 GeV/c) the strangeness production is dominated by the thermal like processes.

*Hwa and Yang, nucl-th/0602024; STAR: nucl-ex/0703033

Blast Wave Fits: T_{fo} vs. $\langle \beta_T \rangle$

200GeV Au + Au collisions

Multi-strange hadrons freeze-out with higher T_{fo} (~ T_{ch}) and smaller $\langle \beta_T \rangle$

- π, K, and p change smoothly from peripheral to central collisions.
- 2) At the most central collisions, $\langle \beta_T \rangle$ reaches 0.6c.
- 3) Multi-strange particles ϕ , Ω are found at higher T and lower $\langle \beta_T \rangle$
- ⇒ Sensitive to early partonic stage!

STAR: NP<u>A715</u>, 458c(03); *PRL* <u>92</u>, 112301(04); <u>92</u>, 182301(04).

Slope Parameter Systematics

$$f = A \cdot \exp(-m_T / T_{slope})$$

RHIC results:

Collective motion for multi-strange and charm hadrons!

$$\langle \beta_p \rangle \ge 0.2c$$

SPS results:

No collective motion for multi-strange and charm hadrons!

At RHIC, ϕ , Ξ , Ω , and J/ψ show collective motion in 200 GeV Au + Au central collisions!

PHENIX (π , K, p, J/ ψ): PRC69, 034909(04), QM05; STAR (ϕ , Ξ, Ω): QM05.

EOS Parameters at RHIC

In central Au+Au collisions:

- partonic freeze-out:

*T_p = 165 ± 10 MeV
$$(β_p)$$
 ≥ 0.2 (c)

weak centrality dependence

- hadronic freeze-out:

*
$$T_{fo} = 100 \pm 5 \text{ (MeV)}$$

 $\langle \beta_{fo} \rangle = 0.6 \pm 0.05 \text{ (c)}$

strong centrality dependence

Systematic study are needed to understand the centrality dependence of the EOS parameters

^{*} Thermalization assumed

QCD Phase Diagram

Anisotropy Parameter v₂

coordinate-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Collectivity, Deconfinement at RHIC

- v₂ of light hadrons and multi-strange hadrons
- scaling by the number of quarks

At RHIC:

- ➡ m_T NQ scaling
- **⇒** Partonic Collectivity
- **⇒** Deconfinement

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04), 95, 122301(05) nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68</u>, 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. <u>PLB583</u>, 73(04) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

ϕ -mesons Flow: Partonic Flow

φ-mesons are very special:

- they do not re-interact in hadronic environment
- they are formed via coalescence with thermal s-quarks
- they show strong collective flow

STAR: nucl-ex/0703033

Summary

In Au + Au collisions at RHIC:

- (1) Hadron yields in the state of equilibrium chemical freeze-out near the transition temperature
- (2) The yields $N(\Omega)/N(\phi)$ ratios indicate thermalization
- (3) Partonic collectivity and de-confinement

Next step: test thermalization with heavy flavor hadrons